E-ISSN: 2691-1361

Journal of Philanthropy and Marketing

INSTIGATING RELIABILITY OF ARTIFICIAL INTELLIGENCE BY EMBRACING IDEAS IN MANAGING WORKFORCE

K.Gayathri

Research Scholar, VISTAS, Pallavaram, Chennai – 600 117

Dr. K.Majini Jes Bella

Assistant Professor and Research supervisor, VISTAS, Pallavaram, Chennai – 600 117

ABSTRACT

Purpose/objectives of the study: This study discovers the role of AI in improving workforce reliability by integrating AI-driven strategies for workforce management.

Methodology: Mixed-method approach has been adopted to examine how embracing AI-driven ideas enhance reliability in workforce management. Cronbach's alpha testhas been applied to analyze the reliability of the questionnaire and KMO test is used to ascertain the sampling adequacy. Correlation and mediation analysis is used for this research to analyze the findings of the study.

Findings: The adoption of artificial intelligence can be enhanced with the help of building trust among the employees and managing the workforce. The latest innovative tools of technology namely artificial intelligence, machine learning, deep learning, robotics, and algorithms can potentially create rapid growth in the organization's successful development. This highly creative technology has significantly transformed the work performed by the employees and organizing the work process.

Research implications: The organizations need to provide a framework for evaluating the role of AI in enhancing productivity, workforce stability, and engagement. The management and HRdepartment should help in designing AI-based performance assessment, and task allocation systems.

Novelty of the study: According to the review of literature most of the research was concentrated AI in HRM, building trust in different areas. But this study focused on instigating reliability of AI by embracing ideas in managing workforce.

Keywords: Artificial Intelligence, trust, instigation, deep learning, robotics, workforce.

1.1 INTRODUCTION

This study discovers how organizations can instigate reliability of AI by adopting innovative ideas in workforce management. Artificial Intelligence is quickly reshaping workforce management, provide innovative solutions in decision-making process, improve efficiency, and increase the productivity, (Achchab, and Temsamani, 2021). Artificial Intelligence has transformed workforce management, (Joksimovic, andIfenthaler, 2020). Though, ensuring reliability of AI is crucial for improving trust and enhancing its integration into workforce management, (Azaz, 2023). However, ensuring reliability of AI in managing the workforce requires a strategic approach that embraces new ideas and ethical considerations, (Niehueser, andBoak, 2020; Nawaz, 2019). Organizations should integrate AI responsibly, addressing trials such as bias, and transparency while improving balance between human expertise and automation, (Rodgers, Stefanidis,

E-ISSN: 2691-1361

and Tarba, 2023). Embracing innovations with focus on reliability will optimize workforce management and also improve long-term organizational success in the digital world, (Naomi Aoki, 2021; Nawaz, 2019).

1.2 REVIEWS OF LITERATURE

Xu, Yijie Huang, Dong zhou (2024), ascertained that the article focuses on the importance in the formation of trust in the organization by adapting the technology of AI in HRM. Based on the theory of social exchange and a theory of leader member exchange initial trust is identified as a factor in effective and cognitive process of applying artificial intelligence among the employees. A leader who is trustworthy increases the trust between artificial intelligence and employees and their intention in adapting the same. The initial trust provides both the advantages and disadvantages in adapting the same. To increase the sustainability, the priority should be given in initial trust cultivation of artificial intelligence with respect to the strategies of employees, oriented trusted leadership and training of resources that are supportive

Azazzirar, (2023), assessed that operational efficiency in the organizations are increased by the adoption of AI in the workplace. Eat. It also enables decisions that are informed in a faster and quicker way and provides innovating services and products. The investigation of the coexistence of workers with AI in the workplace is identified in four major themes that has led to four major contributions. The first one is about distressed and job threat.

According to Donovan, (2019), interactions among artificial intelligence and workers by grouping them into conception skills based on The benefit of coexistence with technical skills and finally create a symbiotic relationship by evidence. These are possible only with the appropriate strategies of training that helps the workers in developing skills that are technical, human and technological skills. Interest and attention should be given for the changes in the place of work.

Naomi Aoki (2021), examined that the initial trust of public in artificial intelligence is based on the decision making aids that are used in providing services to the public. The hypothesis of the study reveals that decision loop is related to that of humans which creates a big difference in the opinion of public regarding initial trust. This hypothesis was attained based on the results of the testing which denoted that positive impact of artificial intelligence usage is much higher compared to that of no usage of tools and techniques of artificial intelligence.

Keng Sian Weiyu Wang (2018), found that the growth of artificial intelligence has encroached many sectors and is intensified in such a way that it has become a major part of human activities in the day today life. The potentiality of Aland deep learning has created positive impact in the rapid advancement of using drone's cars that are self-driven and robots that are used for home and for doing household chores etc. This is possible only with the thrust of adapting artificial intelligence for the success in the progress and development of the business organization. (Huang, and Lai, 2013). The trust or reliability using the artificial intelligence is analyzed by comparing it with other technologies. The trust is considered as a crucial factor in using of technology and they are of two types. They are initial trust and developing continuous trust in artificial intelligence. Both these requires separate focus that has to be considered in management of workforce.

1.3 AI RELIABILITY IN WORKFORCE MANAGEMENT

E-ISSN: 2691-1361

Reliability in AI is the accuracy, consistency, (Nawaz, 2019) and dependability of AI systems in achieving tasks and making decisions, (Joksimovic, andIfenthaler, 2020). In personnel management, AI applications range from recruitment automation to workforce performance evaluation and resource allocation, (Getnet, Jebena, and Tsegaye, 2014). Reliability AI requires a combination of ethical considerations, strong algorithm development, and continuous monitoring, (Garg, Sinha, and Mani, 2022).

1.3.1 Strategies to Enhance AI Reliability in Workforce Management

1.3.1.1 Data Integrity

Organizations need to ensure data accuracy, consistency, and relevancy by implementing strong data governance policies, (McCarthy, Shannon, Samuel, Newell, and Simon Lipson, 2019). Data validation processes and regular audits can mitigate biases and errors, enhancing the reliability of AI, (Rodgers, Stefanidis, and Tarba, 2023).

1.3.1.2 Transparency

Organizations must prioritize transparency to build trust in AI-driven workforce management, (Yijie Huang, and Dong zhou2024; George, and Thomas, 2019). AI models should be interpretable, assisting HR professionals and employees to understand decision-making processes, (Malik, Kar, and Gupta, 2021). The explainable AI (XAI) frameworks allow the users to validate AI-generated perceptions and address any discrepancies, (Stone, Deadrick, D. L., Lukaszewski, and Johnson, 2015).

1.3.1.3 Human-AI Collaboration

Organizations establish hybrid workforce models where AI assists HR managers (Keng Sian and Weiyu Wang, 2018)in tasks like talent acquisition, employee engagement and performance analysis, while human oversight ensures ethical and contextual decision-making, (Malik, Thevisuthan, and De Sliva, (2022). Embracing the innovative ideas of artificial intelligence has greatly impacted upgrading skills and knowledge strategies in managing the organization's workforce, (Vrontis, Pereira, Makrides, and Trichina, 2021). The trust in using these tools and techniques has been analyzed by comparing them with other technologies, (Christofi, Tarba, and Trichina, 2022).

1.3.1.4 Bias Mitigation and Fairness

AI systems strengthen the productivity of the organization, (Keng Sian and Weiyu Wang, 2018; Naomi Aoki, 2021). Organizations should implement bias detection mechanisms and ensure diversity in data collection, (Leong, 2018; Nawaz, 2019). Regularly updating artificial Intelligence models with varied datasets can promote fairness in workforce-related artificial Intelligence applications, (Achchab, and Temsamani, 2021).

1.3.1.5 Continuous Learning

The organizations should implement adaptive learning algorithms and regularly updating AI models with real-time feedback can enrich their relevance and accuracy, (George, and Thomas, 2019). Workforce management artificial Intelligence should be capable of self-improvement to align with dynamic business environments, (Azazzirar, 2023).

1.3.1.6 Regulatory Compliance

E-ISSN: 2691-1361

The organizations should adhere to ethical artificial Intelligence principles and legal frameworks governing AI usage in workforce management, (Fritz, Brandt, and Bayer, 2020). The data protection laws ensuring artificial Intelligence aligns with corporate ethics will strengthen reliability and prevent misuse, (Rodgers, Stefanidis, Degbey, andTarba, 2023). There are quite a few challenges in adopting artificial intelligence that are slow when not learned and applied appropriately, (Feuerriegel,Dolata, and Schwabe, 2020). Hence the requirement of trust is more relevant in adapting the ideas of artificial intelligence to the managing of the workforce, (Anderson, 2003).

1.3.1.7 Upskilling Employees

As artificial Intelligence adoption grows, employees must be equipped with the skills to collaborate effectively with artificial Intelligence systems, (Votto, Najafirad, and Rao, 2021). The AI related training programs can help workforce to understand AI functionalities, developing a workforce that is adaptable to AI-driven environments, (George, and Thomas, 2019).

1.4 OBJECTIVES

- To evaluate the influence of AI in workforce management.
- > To analyse the mediating effect of Data Integrity, Upskilling Employees and Human-AI Collaboration.

1.5 HYPOTHESIS

- ❖ H₁: The factors of AI positively impact upskilling employees.
- ❖ H₂: There is a positive impact on Data Integrity and Upskilling Employeesand Human-AI Collaboration.

1.6 METHODOLOGY

This study employed qualitative and quantitative methods to gather comprehensive insights. This approach can help the organisations to create a more efficient, and sustainable workforce. Cronbach's alpha value =0. 907 and KMO value for this study is 0.841.

1.7 ANALYSIS AND INTERPRETATION

1.7.1 Correlations

Table 1.1: Correlations									
				Bias					
				Mitigation					
	Data		Human-AI	and	Continuous	Regulatory	Upskilling		
	Integrity	Transparency	Collaboration	Fairness	Learning	Compliance	Employees		
Data Integrity	1	.705**	.310**	.367**	.359**	.510**	.481**		
Transparency		1	.498**	.546**	.583**	.724**	.691**		
Human-AI			1	.730**	.597**	.687**	.679**		
Collaboration									
Bias				1	.586**	.521**	.614**		
Mitigation and									
Fairness									

Continuous

Learning
Regulatory
Compliance
Upskilling
Employees

E-ISSN: 2691-1361							
	.639**	.637**					
	1	.820**					
		1					

1

H₁: The factors of AI positively impact upskilling employees.

Table 1.1 shows the factors of artificial intelligence were significantly correlated with each other @ 1% level, there is a relationship between Data Integrity, Human-AI Collaboration, Bias Mitigation and Fairness, Continuous Learning, Regulatory Compliance, and Upskilling Employees.

Correlation coefficient among "Data Integrity" and "Transparency" is .705**, which shows 70.5 percent positive relationship among "Data Integrity" and "Transparency" at 1% level. Correlation coefficient among "Data Integrity" and "Human-AI Collaboration" is .310**, which shows 31 percent positive relationship among "Data Integrity" and "Human-AI Collaboration" at 1% level. Correlation coefficient among "Data Integrity" and "Bias Mitigation and Fairness" is .367**, which shows 36.7 percent positive relationship among "Data Integrity" and "Bias Mitigation and Fairness" at 1% level. Correlation coefficient among "Data Integrity" and "Continuous Learning" is .359**, which shows 35.9 percent positive relationship among "Data Integrity" and "Continuous Learning" at 1% level. Correlation coefficient among "Data Integrity" and "Regulatory Compliance" is .510**, which shows 51 percent positive relationship among "Data Integrity" and "Regulatory Compliance" at 1% level. Correlation coefficient among "Data Integrity" and "Upskilling Employees" is .481**, which shows 48.1 percent positive relationship among "Data Integrity" and "Upskilling Employees" at 1% level.

Correlation coefficient among "Transparency" and "Human-AI Collaboration" is .498**, which shows 49.8 percent positive relationship among "Transparency" and "Human-AI Collaboration" at 1% level. Correlation coefficient among "Transparency" and "Bias Mitigation and Fairness" is .546**, which shows 54.6 percent positive relationship among "Transparency" and "Bias Mitigation and Fairness" at 1% level. Correlation coefficient among "Transparency" and "Continuous Learning" is .583**, which shows 58.3 percent positive relationship among "Transparency" and "Continuous Learning" at 1% level. Correlation coefficient among "Transparency" and "Regulatory Compliance" is .724**, which shows 72.4 percent positive relationship among "Transparency" and "Regulatory Compliance" at 1% level. Correlation coefficient among "Transparency" and "Upskilling Employees" is .691**, which shows 69.1 percent positive relationship among "Transparency" and "Upskilling Employees" at 1% level.

Correlation coefficient among "Human-AI Collaboration" and "Bias Mitigation and Fairness" is .730**, which shows 73 percent positive relationship among "Human-AI Collaboration" and "Bias Mitigation and Fairness" at 1% level. Correlation coefficient among

^{**.} Correlation is significant at the 0.01 level (2-tailed).

E-ISSN: 2691-1361

"Human-AI Collaboration" and "Continuous Learning" is .597**, which shows 59.7 percent positive relationship among "Human-AI Collaboration" and "Continuous Learning" at 1% level. Correlation coefficient among "Human-AI Collaboration" and "Regulatory Compliance" is .687**, which shows 68.7 percent positive relationship among "Human-AI Collaboration" and "Regulatory Compliance" at 1% level. Correlation coefficient among "Human-AI Collaboration" and "Upskilling Employees" is .679**, which shows 67.9 percent positive relationship among "Human-AI Collaboration" and "Upskilling Employees" at 1% level.

Correlation coefficient among "Bias Mitigation and Fairness" and "Continuous Learning" is .586**, which shows 58.6 percent positive relationship among "Bias Mitigation and Fairness" and "Continuous Learning" at 1% level. Correlation coefficient among "Bias Mitigation and Fairness" and "Regulatory Compliance" is .521**, which shows 52.1 percent positive relationship among "Bias Mitigation and Fairness" and "Regulatory Compliance" at 1% level. Correlation coefficient among "Bias Mitigation and Fairness" and "Upskilling Employees" is .614**, which shows 61.4 percent positive relationship among "Bias Mitigation and Fairness" and "Upskilling Employees" at 1% level.

Correlation coefficient among "Continuous Learning" and "Regulatory Compliance" is .639**, which shows 63.9 percent positive relationship among "Continuous Learning" and "Regulatory Compliance" at 1% level. Correlation coefficient among "Continuous Learning" and "Upskilling Employees" is .637**, which shows 63.7 percent positive relationship among "Continuous Learning" and "Upskilling Employees" at 1% level.

Correlation coefficient among "Regulatory Compliance" and "Upskilling Employees" is .820**, which shows 82 percent positive relationship among "Regulatory Compliance" and "Upskilling Employees" at 1% level.

1.7.2 Mediation Analysis - Andrews Hayes Test

Model-4

- ✓ Dependent variable (Y) = Upskilling Employees
- ✓ Independent variable (X) = Data Integrity
- ✓ Mediating variable (M) = Human-AI Collaboration

Table 1.2 Haves process direct effect of Data Integrity on Upskilling Employees

	R	R –sq	MSE	F	df1	df2	P
	.3102	.0962	.6903	14.0524	1.00	132.00	.0003
Variable							
	coeff	Se	T	P	LLCI	ULCI	
constant	2.8970	.2932	9.8807	.0000	2.3170	3.4770	
Data Integrity	.2914	.0777	3.7487	.0003	.1376	.4452	

The above table highlight direct effect between Data Integrity and Upskilling Employees is statistically significant (coeff= 0. 2914, Se = .0777, P = 0.0003).

Table 1.3 Mediating effect of Human-AI Collaboration towards Data Integrity and Upskilling Employees

R R-se	MSE F	df1 df2	P
--------	-------	---------	---

E-ISSN: 2691-1361

Variable	.7363	.5421	.3491	77.5442	2.0000	131.0000	.0000
	coeff	Se	T	P	LLCI	ULCI	
Constant	.6942	.2750	2.5240	.0128	.1501	1.2382	
Data Integrity	.2797	.0582	4.8098	.0000	.1647	.3948	
Human-AI	.5836	.0619	9.4286	.0000	.4612	.7061	
Collaboration							

Table 1.3 found that mediating effect of human-ai collaboration between data integrity and upskilling employees is statistically significant (coeff = 0.2797, se = 0.0582 and p=0.000). The direct effect data integrity to upskilling Employees is statistically significant (coeff = 0.5836, Se = 0.0619 and P=0.000).

H₂: There is a positive impact on Data Integrity and Upskilling Employees and Human-AI Collaboration.

Table 1.4 Total effect, direct effect and indirect effect of data integrity on upskilling employees with mediating effect of human-AI collaboration.

1 0	0							
	Total Effect of X on Y							
	Effect	Se	Т	P	LLCI	ULCI		
Variable	.4498	.0714	6.3033	.0000	.3087	.5910		
10220020	Direct Effect of X on Y							
	.2797	.0582	4.8098	.000	.1647	.3948		
	Indirect Effect(s) of X on Y							
Human-AI	Effect	Se	LLCI ULCI					
Collaboration	.1819	.0722	.0418		.3260			

The table 1.4 identifies, Indirect effect (IE=0.1819 is statistically significant 95%, CI= (0.0418, 0.3260).

Therefore, H₂: There is a positive impact on data integrity and upskilling employees and human-AI collaboration.

1.8 DISCUSSION

Artificial Intelligence is transforming workforce management by improving efficiency, decision-making, and productivity. Though, ensuring the reliability of AIin workforce management needs strategic approach that embraces innovative ideas and moralthoughts. The companies need to integrate AI-driven tools with human expertise to improve performance while maintaining trust and transparency. Moreover, data accuracy, addressing biases, and security concerns is crucial to building belief in AI-driven workforce solutions. A balanced synergy between human intelligence and AI will lead to a more trustworthy and effective workforce management system. Organizations shoulddevelop a collective atmosphere where Artificial Intelligence complements human expertise rather than replaces it, ensuring that technology aligns with ethical standards and business goals.

1.9 Limitations and scope for further research

1.9.1 Limitations

E-ISSN: 2691-1361

The key challenges in AI algorithms is bias, which can lead to unfair employing, decision-making, task allocations and promotions. The AI systems rely heavily on meaning inaccurate data quality, or incomplete data can compromise their effectiveness. The privacy and security concerns pose significant risks, as AI-driven workforce solutions handle sensitive employee information. Besides, the integration of artificial Intelligence requires significant investment in infrastructure and employee training, which cannot be feasible for all companies. Resistance to change and the fear of job displacement among employees also hinder the adoption of AI in workforce management.

1.9.2 Future Scope

Future studies can discover advanced AI-driven decision-making models that reduce bias and enrich transparency. The research on integrating AI with emerging technologies likequantum computing and block-chain could strengthen data security and ethical compliance in workforce management. The long-term influence of AI on employee job satisfaction, skill development and mental well-being also requires deeper investigation. The research on global AI governance policies and regulatory frameworks can help establish standardized guidelines for ethical AI adoption.

1.10 CONCLUSION

This study concludes that ensuring the reliability of AI in workforce management needs a proactive approach that embraces ethical considerations, innovation, and human-AI collaboration. The continuous monitoring, maintaining transparency and addressing biases are essential to building trust and reliability in AI systems. As companies evolve, a balanced approach that influencesAI capabilities and human expertise will be vital to sustainable workforce management, driving growth and long-term success. Thereliability of AI in workforce management can be effectively instigated by embracing innovative ideas that promote transparency, efficiency, and decision-making. Artificial Intelligenceisimportant to transform workforce operations by improving automating tasks, and increasing productivity, (Yijie Huang, and Dong zhou2024). However, its reliability depends on continuous improvements, regular monitoring, and addressing key challenges such as bias, security, and employee adaptation, (Naomi Aoki, 2021). Thereliability of AIin workforce management needs a strategic approach that combines data integrity, transparency, ethical considerations, and continuous adaptation. The effectively managed AI serves as a transformative force that develop workforce efficiency and innovation.

REFERENCES

- Achchab, S., and Temsamani, Y. K. (2021). Artificial intelligence use in human resources management: Strategy and operation's impact. In 2021 IEEE 2nd International Conference on Pattern Recognition and Machine Learning (PRML) (PP: 311–315).
- Anderson, N. (2003). Applicant and recruiter reactions to new technology in selection: A critical review and agenda for future research. International Journal of Selection and Assessment, 11(2-3), 121–136.
- Azazzirar, Syed Imran Ali, and Nazrul Islam (2023). Worker and workplace artificial intelligence coexistence: Emerging themes and research agenda. Journal of technovation, 124.

E-ISSN: 2691-1361

- de Laat, M., Joksimovic, S., and Ifenthaler, D. (2020). Artificial intelligence, real-time feedback and workplace learning analytics to support in situ complex problemsolving: A commentary. International Journal of Information and Learning Technology, 37(5), PP: 267–277.
- Feuerriegel, S., Dolata, M., &Schwabe, G. (2020). Fair ai: Challenges and opportunities. Business & information systems engineering, 62(4), 379–384.
- Fritz, A., Brandt, W., Gimpel, H., & Bayer, S. (2020). Moral agency without responsibility? analysis of three ethical models of human-computer interaction in times of artificial intelligence (ai). De Ethica, 6(1), 3–22.
- Getnet, B., Jebena, T., &Tsegaye, A. (2014). The effect of employees' fairness perception on their satisfaction towards the performance appraisal practices. International Journal of Management and Commerce Innovations, 2(1), 174–210.
- Garg, S., Sinha, S., Kar, A. K., and Mani, M. (2022). A review of machine learning applications in human resource management. International Journal of Productivity and Performance Management, 71(5), PP: 1590–1610.
- George, G., and Thomas, M. R. (2019). Integration of artificial intelligence in human resource. International Journal of Innovative Technology and Exploring Engineering, 9 (2), PP: 5069–5073.
- Huang, Y.-M., Chen, C.-C., & Lai, S.-Y. (2013). Test of a multidimensional model linking applicant work experience and recruiters' inferences about applicant competencies. The International Journal of Human Resource Management, 24(19), 3613–3629.
- Keng Sian and Weiyu Wang (2018). Building trust in artificial intelligence and machine learning and robotics. Journal of culture business technology, 31 (2), PP: 47-53.
- Leong, C. (2018). Technology & Recruiting 101: how it works and where it's going. Strategic HR Review, 17(1), 50-52.
- Malik, A., Thevisuthan, P., & De Sliva, T. (2022b). Artificial intelligence, employee engagement, experience, and HRM BT. In A. Malik (Ed.), Strategic human resource management and employment relations: An international perspective (PP: 171–184). Springer International Publishing. https://doi.org/10.1007/978-3-030-90955-0_16.
- Malik, N., Tripathi, S., Kar, A., & Gupta, S. (2021). Impact of artificial intelligence on employees working in industry 4.0 led organizations. International Journal of Manpower. https://doi.org/10.1108/IJM-03-2021-0173
- McCarthy, J., Minsky, M., Selfridge, O., Solomonoff, R., More, T., Shannon, C., Rochester, N., Samuel, A., Newell, A., & Simon Lipson, H. (2019). Artificial Intelligence and HR: The new wave of technology. Journal of Advances in Social Science and Humanities, 5(4), 715–720.
- Naomi Aoki (2021), The importance of assurance that humans are still in the decision loop for public trust in artificial intelligence: Evidence from an online Experiment. Journal of computers in human behavior, 114.
- Nawaz, N. (2019). Artificial intelligence is transforming recruitment effectiveness in CMMI level companies. International Journal of Advanced Trends in Computer Science and Engineering, 8(6), PP: 3017–3021.

E-ISSN: 2691-1361

- Niehueser, W., andBoak, G. (2020). Introducing artificial intelligence into a human resources function. Industrial and Commercial Training, 52(2), PP: 121–130.
- O'Donovan, D. (2019). HRM in the organization: An overview. Management Science. Management and industrial engineering. PP: 75-110.
- Rodgers, W., Murray, J. M., Stefanidis, A., Degbey, W. Y and Tarba, S. Y. (2023). An artificial intelligence algorithmic approach to ethical decision-making in human resource management processes. Human Resource Management Review, 33(1), PP: 1–19.
- Stone, D. L., Deadrick, D. L., Lukaszewski, K. M., & Johnson, R. (2015). The influence of technology on the future of human resource management. Human Resource Management Review, 25, 216–231.
- Votto, A. M., Valecha, R., Najafirad, P., and Rao, H. R. (2021). Artificial intelligence in tactical human resource management: A systematic literature review. International Journal of Information Management Data Insights, 1(2), PP: 1–15.
- Vrontis, D., Christofi, M., Pereira, V., Tarba, S., Makrides, A., & Trichina, E. (2022). Artificial intelligence, robotics, advanced technologies and human resource management: A systematic review. The International Journal of Human Resource Management, 33(6), 1237–1266.
- Vrontis, D., Christofi, M., Pereira, V., Tarba, S., Makrides, A., & Trichina, E. (2021). Artificial intelligence, robotics, advanced technologies and human resource management: A systematic review. The International Journal of Human Resource Management, 1–30. https://doi.org/10.1080/09585192.2020.1871398.
- Xu, Yijie Huang, Jianewang, and Dong zhou (2024). How do employees form initial trust in artificial intelligence: Hard to explain but leaders help. Asia pacific journal of human resourcesvol, 62 (3), PP: 12402.