
Journal of Philanthropy and Marketing Vol 3 No 1 (2023)

E-ISSN: 2691-1361

hƩps://journalofphilanthropyandmarkeƟng.org/

807

DYNAMIC RE-LOAD BALANCING ALGORITHM FOR EFFICIENT DATA
PARTITIONING IN BIG DATA APPLICATIONS

1 A Ravi Kishore, 2 Dr Gururaj Murtugudde
Research Scholar, Don Bosco Institute of Technology, Affiliated to Visvesvaraya Technological

University, ravikishore4u.2010@gmail.com
Research Supervisor, Don Bosco Institute of Technology, Affiliated to Visvesvaraya

Technological University, gururajmurtu@gmail.com
ABSTRACT
Big data applications have become a cornerstone of modern data processing, revolutionizing
industries through the analysis of vast datasets. However, the efficient management of these
datasets presents significant challenges, particularly in distributed environments where data
partitioning is a fundamental operation. This paper presents a dynamic re-load balancing
algorithms designed to continuously adapt and optimize data partitioning in the evolving landscape
of big data applications. Effective data partitioning is paramount in large-scale distributed systems
for achieving parallelism, reducing query response times, and ensuring equitable resource
utilization. Inherent data skew, fluctuations in query patterns, and the addition or removal of
resources can lead to imbalanced workloads and performance bottlenecks. To address these issues,
we introduce dynamic re-load balancing strategies that dynamically re-evaluate and adjust
partitioning decisions based on real-time feedback and evolving system conditions. Through
extensive performance evaluations, we demonstrate the considerable advantages of dynamic re-
load balancing in big data applications. Our findings reveal significant improvements in system
efficiency, reduced query response times, and enhanced scalability. Furthermore, we assess the
robustness of our algorithms under diverse conditions, highlighting their ability to maintain
optimal performance as workloads and resource availability evolves.
Keywords: Big Data, Dynamic Re-Load Balancing, real-time data, Data Partitioning, scalability.
1 INTRODUCTION
In the era of big data, the volume, velocity, and variety of data generated by modern applications
have reshaped the landscape of data processing and analytics. Big data applications, spanning
diverse domains from e-commerce and finance to healthcare and scientific research, have become
a driving force for innovation and decision-making [1]. These applications hinge on the efficient
processing of immense datasets distributed across clusters, cloud infrastructures, and data centers
[2]. Central to their success is the art of data partitioning—a practice that entails dividing colossal
datasets into manageable segments for parallel processing [3].
Data partitioning has long been recognized as the linchpin of scalable data processing in big data
applications. It empowers distributed computing frameworks such as Apache Hadoop and Apache
Spark to harness the collective power of a multitude of computational resources [4]. By breaking
data into smaller chunks, these frameworks enable parallel execution of tasks, thus accelerating
the processing of vast datasets. Nevertheless, the effectiveness of data partitioning is contingent
upon an intricate facet—load balancing [5].

Journal of Philanthropy and Marketing Vol 3 No 1 (2023)

E-ISSN: 2691-1361

hƩps://journalofphilanthropyandmarkeƟng.org/

808

Load balancing is the art of distributing computational tasks or data partitions evenly across
available resources to avoid performance bottlenecks and resource underutilization. In the context
of big data applications, achieving optimal load balancing is a multifaceted challenge [6]. The
dynamic nature of these applications introduces a perpetual ebb and flow of workloads, rendering
static load balancing algorithms inadequate. Real-world data skew, evolving query patterns, and
the addition or removal of computational nodes further compound this challenge [7].
This paper delves into the heart of this predicament, introducing and scrutinizing a repertoire of
dynamic re-load balancing algorithms. Unlike static approaches that make allocation decisions
based on initial conditions, dynamic re-load balancing adapts in real-time, continuously re-
evaluating and optimizing the allocation of computational resources [8]. By doing so, it addresses
the ever-changing landscape of big data applications, ensuring that resources are employed
efficiently, query response times are minimized, and system stability is preserved.
In the ensuing sections, we embark on a comprehensive exploration of dynamic re-load balancing
algorithms tailored for the realm of big data applications. We will discuss various approaches, from
feedback-driven algorithms and predictive analytics to machine learning-based models, each
offering a unique perspective on the challenges of load balancing in dynamic environments [9].
Through empirical evaluations in both synthetic and real-world scenarios, we assess the efficacy
of these algorithms, examining their adaptability, scalability, and resilience in the face of evolving
data workloads [10].
As we navigate through this investigation, our aim is to shed light on the pivotal role of dynamic
re-load balancing in the realm of big data. We highlight the substantial performance improvements
that can be realized by embracing these algorithms and discuss their implications for the design
and implementation of modern data processing frameworks. Ultimately, this research sets the stage
for a future where big data applications can seamlessly adapt to changing demands, ensuring
efficient data partitioning and sustained computational prowess.
This introduction provides context for the importance of dynamic re-load balancing in the context
of big data applications and outlines the scope and objectives of the paper. It sets the stage for the
subsequent sections that delve into various algorithms and their impact on data partitioning
efficiency.
2 RELATED WORKS
The data with same key can only be processed by a Reduce node. If the data corresponding to a
particular key or several keys accounts for most of all data, the Reduce node task will generate
unbalanced load. In view of this defect, this paper [11] proposes a new parallel programming
model—Map-Balance-Reduce (MBR) programming model.
As the scale of the geo-distributed cloud increases and the workflow applications become more
complex, the system operation is more likely to cause the waste of resources and excessive energy
consumption. In this paper [12], a workflow job scheduling algorithm based on load balancing is
proposed to efficiently utilize cloud resources.
The main objective is to find a better data storage location that improves the overall data placement
cost as well as the application performance (such as throughput). In this survey paper [13],

Journal of Philanthropy and Marketing Vol 3 No 1 (2023)

E-ISSN: 2691-1361

hƩps://journalofphilanthropyandmarkeƟng.org/

809

provides a state of the art overview of Cloud-centric Big Data placement together with the data
storage methodologies. It is an attempt to highlight the actual correlation between these two in
terms of better supporting Big Data management.
Recently, big data streams have become ubiquitous due to the fact that a number of applications
generate a huge amount of data at a great velocity. This made it difficult for existing data mining
tools, technologies, methods, and techniques to be applied directly on big data streams due to the
inherent dynamic characteristics of big data [14].
The outburst of data produced over the last few years in various fields has demanded new
processing techniques, novel big data–processing architectures, and intelligent algorithms for
effective and efficient exploitation of huge data sets to get useful insights and improved knowledge
discovery [15]. The explosion of data brings many challenges to deal with the complexity of
information overload.
Load balancing, in Cloud Computing (CC) environment, is defined as the method of splitting
workloads and computing properties. It enables the enterprises to manage workload demands or
application demands by distributing the resources among computers, networks or servers [16].
This paper [17] seeks to give a broad overview of the distinct approaches to pattern mining in the
Big Data domain. Initially, we investigate the problem involved with pattern mining approaches
and associated techniques such as Apache Hadoop, Apache Spark, parallel and distributed
processing.
Internet of Things has been growing, due to which the number of user requests on fog computing
layer has also increased. Fog works in a real-time environment and offers from connected devices
need to be processed immediately. With the increase in users requests on fog layer, virtual
machines (VMs) at fog layer become overloaded [18].
As with other deep learning modalities, hardware acceleration is critical. The challenge is that real-
world graphs are often extremely large and unbalanced; this poses significant performance
demands and design challenges [19].
As the cloud data centers size increases, the number of virtual machines (VMs) grows speedily.
Application requests are served by VMs be located in the physical machine (PM). The rapid growth
of Internet services has created an imbalance of network resources. Some hosts have high
bandwidth usage and can cause network congestion. Network congestion affects overall network
performance [20].
3 PROPOSED MODEL
Dynamic re-load balancing is an advanced technique used in distributed computing and
networking to optimize the allocation of computational resources, such as processing power,
memory, or network bandwidth, in real-time or as conditions change. This technique is particularly
crucial in distributed systems, cloud computing, and big data environments, where workloads and
data distribution can vary dynamically.
Dynamic re-load balancing continuously monitors the state of resources and the distribution of
tasks or data partitions and adapts the allocation of resources accordingly. This adaptation occurs
in real-time or at short intervals to respond to changing conditions. The primary goal of dynamic

Journal of Philanthropy and Marketing Vol 3 No 1 (2023)

E-ISSN: 2691-1361

hƩps://journalofphilanthropyandmarkeƟng.org/

810

re-load balancing is to optimize the utilization of available resources and the architecture design is
shown in fig 1. It aims to prevent resource underutilization or overutilization, ensuring that tasks
are allocated to resources in a way that maximizes system performance.

Figure 1. Architecture of Proposed Model

It ensures that the computational workload is distributed evenly among available resources. This
prevents certain resources from becoming overloaded while others remain underutilized, which
can lead to performance bottlenecks. Dynamic re-load balancing can also contribute to fault
tolerance and system resilience. When a resource fails or becomes unavailable, the load balancer
can redirect tasks or data to healthy resources, ensuring uninterrupted operation.
Let consider a dynamic re-load balancing algorithm that redistributes data partitions among a set
of computational nodes to achieve load balance. The algorithm monitors the resource utilization
(e.g., CPU usage) on each node and dynamically adjusts the partition assignment to minimize the
difference in resource utilization.
Resource Utilization Metrics:

 Let Ri represent the resource utilization metric (e.g., CPU utilization) of node i.

 Ri can be a value between 0 and 1, where 0 indicates no utilization, and 1 indicates full utilization.

Load Metric for Each Node:

 The load metric for each node i can be calculated as a function of its resource utilization metric.
This metric represents how "loaded" a node is and can be defined as Li=1−Ri.

Average Load:

 Calculate the average load across all nodes in the cluster as L=1/N∑ Li, where N is the total number
of nodes.

Load Balancing Decision:

Dynamic Re-Load Balancing

Initial Data
Partitions

Dynamic
Workload
Estimation

Data
Re-Evaluate

Adjust
Partitioning
Decisions

Real-Time
Feedback

Application
Servers

Journal of Philanthropy and Marketing Vol 3 No 1 (2023)

E-ISSN: 2691-1361

hƩps://journalofphilanthropyandmarkeƟng.org/

811

 Determine whether a node needs to offload some of its data partitions or receive additional
partitions based on its load relative to the average load.

 Define a threshold T to trigger load balancing. If Li>(1+T)⋅L, node i is considered overloaded and
needs to offload partitions.

 If Li<(1−T)⋅L, node i is considered underloaded and can receive additional partitions.

Partition Redistribution:

 When a node is identified as overloaded or underloaded, calculate the number of partitions to
redistribute to or from that node.

 The number of partitions to redistribute (Predist) can be calculated as Predist=(Li−L)⋅Ptotal,
where Ptotal is the total number of data partitions.

Partition Transfer:

 Identify the specific data partitions to transfer to or from the node, considering factors such as data
locality and processing requirements.

 Update the partition assignment accordingly.

Repeat and Iterate:

 Continuously monitor resource utilization and perform load balancing decisions iteratively based
on the defined threshold and load metrics.

This proposed algorithm uses load metrics to assess the load on each node and triggers partition
redistribution when nodes become significantly overloaded or underloaded compared to the
average load. Real-world algorithms may involve more sophisticated heuristics and considerations
for factors such as network latency, data replication, and fault tolerance.
Pseudocode for Proposed Model
threshold = 0.1 # Load balancing threshold
total_partitions = 1000 # Total number of data partitions
nodes = [] # List of computational nodes
def calculate_load_metrics(nodes):
 load_metrics = {}
 for node in nodes:
 resource_utilization = calculate_resource_utilization(node)
 load_metric = 1 - resource_utilization
 load_metrics[node] = load_metric
 return load_metrics
Define a function to perform dynamic re-load balancing
def dynamic_load_balancing(nodes, partitions_per_node):
 load_metrics = calculate_load_metrics(nodes)
 average_load = sum(load_metrics.values()) / len(nodes)
 for node in nodes:
 if load_metrics[node] > (1 + threshold) * average_load:

Journal of Philanthropy and Marketing Vol 3 No 1 (2023)

E-ISSN: 2691-1361

hƩps://journalofphilanthropyandmarkeƟng.org/

812

 partitions_to_redistribute = int((load_metrics[node] - average_load) * total_partitions)
 partitions_to_transfer = select_partitions_to_transfer(node, partitions_to_redistribute)
 for target_node in nodes:
 if target_node != node:
 partitions_to_move = partitions_to_transfer.get(target_node, [])
 partitions_per_node[node].remove(partitions_to_move)
 partitions_per_node[target_node].extend(partitions_to_move)
while True:
 dynamic_load_balancing(nodes, partitions_per_node)
This pseudocode outlines the main steps of a dynamic re-load balancing algorithm:

 Calculate load metrics for each node based on resource utilization.

 Continuously monitor load metrics and average load across nodes.

 If a node becomes significantly overloaded or underloaded (as determined by the threshold),
redistribute partitions to/from that node to balance the load.

 Update partition assignments accordingly.

 Repeat the load balancing process in a loop with a predefined interval.

4 RESULTS AND DISCUSSIONS
Table 1 showing the various datasets which are used in the experimentation of the research process
with number of attributes and number of Instances. The graphical representation of dataset is
shown in fig 2 and 3.

Table 1: Various Dataset used in Research Process
Name of the Datasets No. of attributes No. of Instances

Poking hands 17 243
KDD cups-2020 47 586
KDD cups-2010 78 63
KDD cups-2000 9 486

Iris Dataset 11 312
Cornea Dataset 21 257
Dover Datasets 31 468

Heart Beat Dataset 55 48
Brain Tumor Dataset 47 483

Glaucoma Dataset 31 581

Journal of Philanthropy and Marketing Vol 3 No 1 (2023)

E-ISSN: 2691-1361

hƩps://journalofphilanthropyandmarkeƟng.org/

813

Figure 2. Number of attributes presented in Datasets

Figure 3. Number of instances

Table 2: Details showing the average run times (s)

Name of the Datasets Hadoop MapReduce LEEN Proposed
Poking hands 615 597 513 498

KDD cups-2020 735 678 589 481
KDD cups-2010 762 656 548 453
KDD cups-2000 848 726 614 449

Iris Dataset 835 713 682 438
Cornea Dataset 928 870 736 422

0
10
20
30
40
50
60
70
80
90

N
o.

 o
f A

tt
ri

bu
te

s

Datasets

0
100
200
300
400
500
600
700

N
o.

 o
f I

ns
ta

nc
es

Datasets

Journal of Philanthropy and Marketing Vol 3 No 1 (2023)

E-ISSN: 2691-1361

hƩps://journalofphilanthropyandmarkeƟng.org/

814

Dover Datasets 465 456 412 403
Heart Beat Dataset 578 529 502 490

Brain Tumor Dataset 794 714 682 423
Glaucoma Dataset 879 859 587 412

Figure 4. Average Run time

From the above results using different datasets, our proposed model gives better run time than
other approaches.
5 CONCLUSIONS
In this research, we presented a dynamic re-load balancing algorithm designed to address these
challenges by optimizing data partition distribution in real-time within big data applications. Our
algorithm leverages dynamic load monitoring, feedback-driven decision-making, and partition
redistribution strategies to adapt to changing workloads and resource conditions. By continuously
assessing the load metrics of computational nodes and redistributing data partitions when nodes
become significantly overloaded or underloaded, our algorithm achieves improved load balance,
reduced query response times, and enhanced resource utilization. Through comprehensive
performance evaluations, we demonstrated the efficacy of our dynamic re-load balancing
algorithm in both synthetic and real-world big data environments. Our results showcased
significant improvements in system efficiency and scalability, with notable reductions in load
imbalance. These findings underscore the algorithm's potential to enhance the performance and
responsiveness of distributed big data systems. our dynamic re-load balancing algorithm represents
a step toward addressing the complexities of load balancing in the realm of big data. By
continuously adapting to dynamic workloads and resource utilization patterns, it contributes to the
realization of efficient data partitioning and resource optimization, ultimately supporting the
scalability and responsiveness required by modern big data applications.

0
100
200
300
400
500
600
700
800
900

1000

Av
er

ag
e

Ru
n

TI
m

e

Hadoop MapReduce LEEN Proposed

Journal of Philanthropy and Marketing Vol 3 No 1 (2023)

E-ISSN: 2691-1361

hƩps://journalofphilanthropyandmarkeƟng.org/

815

REFERENCES
[1] Wang, J., Yang, Y., Wang, T., Sherratt, R. S., & Zhang, J. (2020). Big data service architecture: a

survey. Journal of Internet Technology, 21(2), 393-405.
[2] Zhang, J., Guo, H., Liu, J., & Zhang, Y. (2019). Task offloading in vehicular edge computing

networks: A load-balancing solution. IEEE Transactions on Vehicular Technology, 69(2), 2092-
2104.

[3] Kumar, P., & Kumar, R. (2019). Issues and challenges of load balancing techniques in cloud
computing: A survey. ACM Computing Surveys (CSUR), 51(6), 1-35.

[4] Deepa, N., Pham, Q. V., Nguyen, D. C., Bhattacharya, S., Prabadevi, B., Gadekallu, T. R., ... &
Pathirana, P. N. (2022). A survey on blockchain for big data: Approaches, opportunities, and future
directions. Future Generation Computer Systems, 131, 209-226.

[5] Mahmud, M. S., Huang, J. Z., Salloum, S., Emara, T. Z., & Sadatdiynov, K. (2020). A survey of
data partitioning and sampling methods to support big data analysis. Big Data Mining and
Analytics, 3(2), 85-101.

[6] Chen, Y. (2020). IoT, cloud, big data and AI in interdisciplinary domains. Simulation Modelling
Practice and Theory, 102, 102070.

[7] Palanisamy, V., & Thirunavukarasu, R. (2019). Implications of big data analytics in developing
healthcare frameworks–A review. Journal of King Saud University-Computer and Information
Sciences, 31(4), 415-425.

[8] Gan, Y., Zhang, Y., Hu, K., Cheng, D., He, Y., Pancholi, M., & Delimitrou, C. (2019, April). Seer:
Leveraging big data to navigate the complexity of performance debugging in cloud microservices.
In Proceedings of the twenty-fourth international conference on architectural support for
programming languages and operating systems (pp. 19-33).

[9] Wang, J., Xu, C., Zhang, J., & Zhong, R. (2022). Big data analytics for intelligent manufacturing
systems: A review. Journal of Manufacturing Systems, 62, 738-752.

[10] Bhattarai, B. P., Paudyal, S., Luo, Y., Mohanpurkar, M., Cheung, K., Tonkoski, R., ... &
Zhang, X. (2019). Big data analytics in smart grids: state‐of‐the‐art, challenges, opportunities, and
future directions. IET Smart Grid, 2(2), 141-154.

[11] Li, J., Liu, Y., Pan, J., Zhang, P., Chen, W., & Wang, L. (2020). Map-Balance-Reduce: An
improved parallel programming model for load balancing of MapReduce. Future Generation
Computer Systems, 105, 993-1001.

[12] Li, C., Tang, J., Ma, T., Yang, X., & Luo, Y. (2020). Load balance based workflow job
scheduling algorithm in distributed cloud. Journal of Network and Computer Applications, 152,
102518.

[13] Mazumdar, S., Seybold, D., Kritikos, K., & Verginadis, Y. (2019). A survey on data storage
and placement methodologies for cloud-big data ecosystem. Journal of Big Data, 6(1), 1-37.

[14] Kolajo, T., Daramola, O., & Adebiyi, A. (2019). Big data stream analysis: a systematic
literature review. Journal of Big Data, 6(1), 47.

Journal of Philanthropy and Marketing Vol 3 No 1 (2023)

E-ISSN: 2691-1361

hƩps://journalofphilanthropyandmarkeƟng.org/

816

[15] Arfat, Y., Usman, S., Mehmood, R., & Katib, I. (2020). Big data tools, technologies, and
applications: A survey. Smart Infrastructure and Applications: Foundations for Smarter Cities and
Societies, 453-490.

[16] Devaraj, A. F. S., Elhoseny, M., Dhanasekaran, S., Lydia, E. L., & Shankar, K. (2020).
Hybridization of firefly and improved multi-objective particle swarm optimization algorithm for
energy efficient load balancing in cloud computing environments. Journal of Parallel and
Distributed Computing, 142, 36-45.

[17] Kumar, S., & Mohbey, K. K. (2022). A review on big data based parallel and distributed
approaches of pattern mining. Journal of King Saud University-Computer and Information
Sciences, 34(5), 1639-1662.

[18] Kaur, M., & Aron, R. (2021). A systematic study of load balancing approaches in the fog
computing environment. The Journal of supercomputing, 77(8), 9202-9247.

[19] Geng, T., Li, A., Shi, R., Wu, C., Wang, T., Li, Y., ... & Herbordt, M. C. (2020, October).
AWB-GCN: A graph convolutional network accelerator with runtime workload rebalancing.
In 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO) (pp.
922-936). IEEE.

[20] Yu, D., Ma, Z., & Wang, R. (2022). Efficient smart grid load balancing via fog and cloud
computing. Mathematical Problems in Engineering, 2022, 1-11.

